
www.manaraa.com

14

CASE Tool Support for Variability Management in Software
Product Lines

RABIH BASHROUSH and MUHAMMAD GARBA, University of East London
RICK RABISER, CDL MEVSS, Johannes Kepler University Linz
IRIS GROHER, Johannes Kepler University Linz
GOETZ BOTTERWECK, Lero—University of Limerick

Software product lines (SPL) aim at reducing time-to-market and increasing software quality through ex-
tensive, planned reuse of artifacts. An essential activity in SPL is variability management, i.e., defining
and managing commonality and variability among member products. Due to the large scale and complexity
of today’s software-intensive systems, variability management has become increasingly complex to conduct.
Accordingly, tool support for variability management has been gathering increasing momentum over the last
few years and can be considered a key success factor for developing and maintaining SPLs. While several
studies have already been conducted on variability management, none of these analyzed the available tool
support in detail. In this work, we report on a survey in which we analyzed 37 existing variability manage-
ment tools identified using a systematic literature review to understand the tools’ characteristics, maturity,
and the challenges in the field. We conclude that while most studies on variability management tools provide
a good motivation and description of the research context and challenges, they often lack empirical data to
support their claims and findings. It was also found that quality attributes important for the practical use
of tools such as usability, integration, scalability, and performance were out of scope for most studies.

CCS Concepts: � General and reference → Surveys and overviews; � Software and its
engineering → Software product lines; Software notations and tools; Software version control

Additional Key Words and Phrases: Software engineering, computer-aided software engineering, software
variability

ACM Reference Format:
Rabih Bashroush, Muhammad Garba, Rick Rabiser, Iris Groher, and Goetz Botterweck. 2017. CASE tool
support for variability management in software product lines. ACM Comput. Surv. 50, 1, Article 14 (March
2017), 45 pages.
DOI: http://dx.doi.org/10.1145/3034827

1. INTRODUCTION

Over the last two decades, Software Product Line (SPL) engineering has increasingly
gained the attention of researchers and practitioners alike. This is due to the potential

The work of R. Rabiser was supported by the Christian Doppler Forschungsgesellschaft, Austria and Primet-
als Technologies. The work of G. Botterweck’s was supported by Science Foundation Ireland (SFI) grants
10/CE/I1855 and 13/RC/2094.
Authors’ addresses: R. Bashroush and M. Garba, School of Architecture Computing and Engineering, Uni-
versity of East London, United Kingdom; emails: r.bashroush@uel.ac.uk, garbamga@gmail.com; R. Rabiser,
Christian Doppler Laboratory for Monitoring and Evolution of Very-Large-Scale Software Systems, Johannes
Kepler University, Linz, Austria; email: rick.rabiser@jku.at; I. Groher, Department of Business Informatics—
Software Engineering, Johannes Kepler University, Linz, Austria; email: iris.groher@jku.at; G. Botterweck,
Lero—The Irish Software Research Centre, University of Limerick, Ireland; email: goetz.botterweck@lero.ie.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0360-0300/2017/03-ART14 $15.00
DOI: http://dx.doi.org/10.1145/3034827

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

http://dx.doi.org/10.1145/3034827
http://dx.doi.org/10.1145/3034827

www.manaraa.com

14:2 R. Bashroush et al.

economic advantages and business competitiveness the SPL engineering process can
bring [Clements and Northrop 2007]. The benefits can range from cutting the devel-
opment cost and increasing software quality to enabling mass customization, market
dominance, and reduced time to market [Clements and Northrop 2007; Pohl et al.
2005a].

SPL engineering is about the planned reuse of common assets among a set of re-
lated systems, usually referred to as the product line or product family [Clements and
Northrop 2007]. The SPL engineering process [Pohl et al. 2005a] involves studying
and managing the common and varied features of the different product line mem-
bers, a process usually referred to as domain engineering or development for reuse.
Core (shared) assets—e.g., requirements, architecture, code, test cases—are then used
as a basis to derive products from the product line, a process usually referred to as
application engineering or development with reuse.

Defining and managing commonalities and variability in software product lines is
widely referred to as variability management and is a key step of the SPL engineering
process [van Gurp et al. 2001]. The variability management process guides the con-
struction of product line variability models. Different types of variability models have
been proposed, e.g., feature models, decision models, Orthogonal Variability Models
(OVM), and UML-based approaches. In Section 1.1, we provide an overview of existing
modeling approaches. For a detailed comparison and classification of variability mod-
eling approaches, we refer to Czarnecki et al. [2012] and Sinnema and Deelstra [2007].
Variability models define the commonalities and variability of the product line from a
problem space (e.g., features, decisions, or variation points) and a solution space (e.g.,
the reusable assets or variants) perspective along with the relationships that exist be-
tween these two spaces and among the elements in these spaces. Example relationships
include exclusivity (when two features cannot exist in one product at the same time);
inclusivity (when the existence of one feature depends on another); and alternatives
(when only one of a number of alternative features can be supported), to name a few.
Variability models tend to be very large in size, in many cases comprising thousands
of features, and complex in nature due to the myriad of relationships that could exist
among the features. This makes the construction of variability models manually a very
tedious and error-prone process. Hence, tool support is of paramount importance for
the variability management process.

Indeed, as widely acknowledged, not the least under the so-called triangle of success
[Quatrani 2002], the success of software engineering projects depends on good tool sup-
port as much as on good software engineering processes. While existing work has inves-
tigated the variability management process in great detail—see, e.g., Chen and Babar
[2011], for a systematic literature review of variability management approaches—tool
support has not yet been studied in detail. In particular, existing work has not set out
to identify and analyze all existing variability management tools. For the SPLE pro-
cess, and particularly for variability management, a large number of tools have been
developed over the last two decades. However, the majority of these tools had limited
success with industrial adoption and never progressed beyond basic proof-of-concept
stages. While dozens of experience reports on adopting the SPLE process in practice
exist, very few focus specifically on variability management and even fewer on the tools
supporting variability management [Berger et al. 2013].

In this work, we thus aimed to study all the published literature on CASE tool
support for variability management over the last two decades using the systematic
literature review methodology [Kitchenham et al. 2007]. The objective was to under-
stand what tools have been produced, the characteristics of these tools, their context,
and the challenges and limitations they faced. Particularly, given most of the academic
tools never made it to industry, the aim was to document lessons learned and avoid

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:3

duplicate efforts in the future. This article presents the results of the study which: (i)
will give practitioners access to a catalogue of published tools (commercial tools are
discussed under a separate section) and guide them in selecting a tool for a given task
enhancing the accessibility of published tools; (ii) provide researchers in the field with
the main challenges and limitations that require further investigation; and (iii) provide
new researchers with a good understanding of the state-of-the-art in tool support for
variability management in SPL engineering.

The remainder of this section provides background overview of the various SPL
modeling approaches. In Section 2, the research methodology is discussed. This includes
the study’s research questions, search protocol, inclusion and exclusion criteria, quality
criteria, and the data extraction and synthesis process. Section 3 provides overall
meta-analyses of the primary studies identifying trends in the field. Based on the
data collected, the research questions are then addressed and discussed in detail in
Section 4. Section 5 discusses additional findings on commercial tools and tool adoption
in industry. Section 6 discusses the study limitations and threats to validity. Section 7
discusses related work. Finally, Section 7 rounds off with a summary and conclusions.

1.1. Background

Variability modeling is essential to define and document the commonalities and vari-
abilities among a set of products in an SPL. Variability models are typically developed
during domain engineering together with the reusable assets. During application engi-
neering, products are derived by selecting variants in the variability model and reusing
the corresponding assets developed during domain engineering [Pohl et al. 2005a].

Over the past two decades, a number of variability modeling techniques have been
developed, each with its own characteristics and concepts [Sinnema and Deelstra 2007].
Feature modeling, decision modeling, and orthogonal variability modeling have gained
the most attention[Czarnecki et al. 2012]. In this section, we provide a short overview of
the three aforementioned techniques. Many of the CASE tools for variability manage-
ment presented in this study support one of these three variability modeling techniques.

Feature modeling originates from the work on Feature-Oriented Domain Analysis
(FODA) [Kang et al. 1990]. Feature models capture features, which are defined as end-
user visible characteristics of systems in the domain Czarnecki et al. [2012]. Features
are hierarchically organized in a feature tree and feature groups represent choices
between multiple sub-features [Sinnema and Deelstra 2007]. Constraints and depen-
dencies between features can typically be expressed in dedicated constraint languages.
Feature models are used to model both the commonality and the variability of a set of
products. Product derivation can be performed by selecting features from the feature
model. Features can optionally be mapped to assets, which can be used to assemble
products based on a valid feature selection during application engineering.

Decision modeling focuses on decisions that distinguish the products of a product
line to guide product derivation. Czarnecki et al. [2012] define decisions as differences
among systems, i.e., what needs to be decided on when configuring a system. Unlike
feature modeling, which focuses on the documentation of commonality and variability,
the main goal of decision modeling is to support product derivation during application
engineering. Thus, a central concept in decision models is the mapping of decisions
to reusable assets. Similar to feature models, dependencies and constraints between
decisions can be defined, e.g., using constraint languages.

Orthogonal Variability Modeling [Pohl et al. 2005a] focuses on the documentation of
variability in a separate variability model rather than integrating variability directly
into development artifacts. Today, decision models and feature models are also primar-
ily used in an orthogonal way [Czarnecki et al. 2012]. The variability defined in an OVM
is related to other artifacts such as feature models, use case models, and component

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:4 R. Bashroush et al.

Fig. 1. Systematic Literature Review process [Brereton et al. 2007].

models [Pohl et al. 2005a]. OVM uses variation points and variants to capture the vari-
ability among a set of products. Similar to decision models, OVM focuses on documented
variabilities. Constraint languages are used to define variability constraints.

In industrial settings, variability models in general not only tend to get very large
but, due to their orthogonal nature, are linked to many different kinds of artifacts.
Different viewpoints need to be provided to address different stakeholder concerns.
This makes effective tool support for variability modeling inevitable before a practical
application in industry can be performed. With various variability management tools
developed over the years, this survey attempts to provide a systematic assessment of
the state of the art.

2. RESEARCH METHOD

To achieve the objectives of this study, a Systematic Literature Review (SLR) approach
was adopted. An SLR is a rigorous method for examining, evaluating, and interpreting
all available research evidence based on research question(s) or particular research
topic(s) [Kitchenham et al. 2007]. This study examines current literature on variability
management tools in SPL engineering (known as primary studies) published over the
last two decades. Throughout this research study, the guidelines for SLRs were followed
as provided in Kitchenham et al. [2007]. This involves three main phases: (1) Planning
the review; (2) Conducting the review, and; (3) Reporting the review. Figure 1 depicts
the stages of SLRs, adapted from Brereton et al. [2007].

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:5

Fig. 2. SLR review protocol process [Brereton et al. 2007].

An important element in SLRs is the development of a review protocol (Figure 2).
This protocol specifies the background and procedures to be used by researchers to
ensure rigor while conducting the review and reduces the possibility of researchers’
bias throughout the review process.

The systematic review protocol begins by defining research questions to be answered
followed by the search strategy to be followed to identify the primary studies (described
in Sections 2.1 and 2.2). Then, the study selection criteria for determining which studies
should be included or excluded from the surveyed literature is defined (Section 2.3).
Quality assessment criteria are then defined. These are used to assess the quality of
the primary studies (Section 2.4). Finally, procedures for extracting and synthesizing
data reported from primary studies are defined (Section 2.5).

Quality assessment and data extraction and synthesis have been performed by the
authors of this article (four senior researchers, and one postdoc, with many years
of experience in the area of variability management (the average experience is over
10 years)). For each article, the data were extracted by one of the four reviewers,
who read the publication in detail. Another reviewer checked the extracted data. The
articles were distributed randomly among the five reviewers, who did not extract or
check their own publications.

2.1. Research Questions

In order to achieve the research aim and objectives of this study, we defined the follow-
ing five research questions.

RQ1: What tools have been developed to manage variability in software product
lines?
RQ2: What are the characteristics of these tools?
RQ3: What is the quality of the research conducted in the reported approaches?
RQ4: What is the context of research?

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:6 R. Bashroush et al.

Table I. Electronic Databases Used for Searching
for Primary Studies

S/No Data Source Names
1. IEEEXplore
2. ACM Digital Library
3. SpringerLink
4. ScienceDirect
5. CiteSeerXLibrary
6. Microsoft Academic Search
7. Scopus
8. IEEE Computer Society Digital Library
9. EBSCOhost E-Journal Services
10. Google Scholar
11. Web of Science

RQ5: What are the main challenges faced by current Product Line Management
(PLM) tools?

2.2. Search Strategy

Following Kitchenham’s guidelines [Kitchenham et al. 2007], we constructed a search
string to help us identify the relevant primary studies to answer our five research
questions.

�Variability AND (Product Line∗ OR Software Product Lines OR Software Product
Family OR Software Product Families OR Product Family OR Product Families∗ OR
Systems Family OR Family of Systems) AND (Variability OR Variability Management
OR Variant OR Variation Point OR Feature Model OR Feature Modeling or Feature
Modelling) AND (Tool OR Tools OR Approach, Approaches, Method∗ OR Methods)�

Although it was not possible to apply only one search string for all the electronic data
sources, when varying the string for different sources we ensured that although the
syntactic nature of the strings was not the same, they were all comparable semantically.

We also performed manual searches on different sources where SPL researchers
were known to publish their findings; this included conferences and workshops. We
searched for papers published between 1990 (i.e., when the first Feature-Oriented
Domain Analysis (FODA) technical report was published [Kang et al. 1990]) up until
July 2015 inclusive (when the search stage of this study was completed). Although
only data reported in peer-reviewed published material was used in the analyses, we
also attempted to acquire the identified tools. Where the tools were not available for
download or use online, the respective authors were contacted.

Our search covered 11 digital data sources as shown in Table I. The manual search
covered the proceedings of the following conferences and workshops:

SPLC (Software Product Line Conference)
VaMoS (Workshop on Variability Modelling of Software-Intensive Systems)
VisPLE (International Workshop on Visualization in Software Product Line
Engineering)
WICSA (Working International Conference on Software Architecture)
EWSA (European Workshop on Software Architecture)

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:7

Finally, forward and backward reference checking (“snowballing”) was conducted on
the identified primary studies. Search engines were used to find citations of the primary
studies identified that could be of relevance to the review (forward reference checking).
The reference lists of the primary studies were then checked for any potentially relevant
studies missed (backward reference checking).

2.3. Study Selection Criteria

This section explains the study selection process and lists the inclusion and exclusion
criteria.

Inclusion Criteria (IC):
IC1: The primary study is a peer-reviewed, scientific paper rather than a PowerPoint
presentation or a short/extended abstract paper.
IC2: The primary study discusses a variability management tool (i.e., a tool for which
documenting and representing variability is a main aim and that was published in
research associated with variability management, e.g., the SPL community).
IC3: When several reports of the same study existed in different sources, the most
complete and recent version of the study was included in the review.
IC4: The paper was written in English.

Exclusion Criteria (EC):
EC1: The primary study does not address variability management tools.
EC2: The papers were published before January 1991 or after July 2015.
EC3: It is a short paper (<5 pages in two-column format, <8 pages in one-column
format), PowerPoint file, poster presentation or consists of lecture notes.
EC4: The primary study consists of a compilation of work, for instance, from a con-
ference or workshop.
EC5: The primary study discusses a commercial tool (we excluded commercial SPL
variability management tools from this survey; we discuss the commercial tools sep-
arately in Section 5).

We found a total of 556 papers from different initial searches covering digital li-
braries, manual searches, and the works of known authors. After the initial screening
of paper abstracts, in which papers addressing non-SPL related topics were excluded
by one researcher, 113 publications were selected. The full papers were then acquired
and four independent researchers reviewed the studies. Forty-seven publications were
then selected through voting and discussions among the four researchers in a first step.
Finally, and after another round carefully considering the inclusion and exclusion cri-
teria, again through voting and discussions in case of disagreements, 37 studies were
selected. Figure 3 shows a summary of the study selection process.

2.4. Quality Assessment Criteria

The quality of the reported research in the selected 37 papers was assessed based on
the eight quality assessment questions listed in Table II. These were based on the
quality assessment strategy defined in Kitchenham et al. [2007]. The studies were
assessed using a ternary scale where each question was given a score of 1 (for Yes), 0.5
(for Perhaps), and 0 (for No). This system allowed us some flexibility when answering
some of the questions that were difficult to judge as Yes or No from the information
provided in the primary study. Once scores were allocated to questions, an aggregate
mark was then given to each study. This data was also used to answer RQ3 (discussed
in Section 3.4).

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:8 R. Bashroush et al.

Fig. 3. Study selection process.

Table II. Quality Assessment Criteria

Questions
QA.Q1 Is there a rationale for why the study was undertaken?
QA.Q2 Is there a description of the context (e.g., industry,

laboratory setting, products used, etc.) in which the
research was carried out?

QA.Q3 Did the paper present enough details about the variability
management tool to enable us conduct the required
analysis?

QA.Q4 Did the paper present an evaluation of the tool? If yes, did
it include feedback from end users?

QA.Q5 Are the substantive claims in the paper supported by
reliable evidence?

QA.Q6 Do the authors compare and evaluate their own results
against related work?

QA.Q7 Do the authors discuss the credibility of their findings?
QA.Q8 Are limitations of the study discussed explicitly?

2.5. Data Extraction and Synthesis

Following the selection process, the 37 primary studies identified are shown in
Table III.

Besides the 37 primary studies included in the study, we identified further 13 tools
(in the 113 papers identified in the first round as described earlier) that did not meet
the inclusion/exclusion requirements. These are shown in Table IV, along with the
criteria they did not meet.

Upon the completion of the primary study selection phase, and the primary study
quality assessment step, data extraction commenced. To answer the research questions,
the following data was extracted from every primary study (cf. Table V). The following

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:9

Table III. Studies Included in the Final Review

Study ID Paper Title
Year of

Publication
Author(s)/
Reference

[S1] DARE-COTS A Domain Analysis Support Tool 1997 [Frakes et al. 1997]
[S2] Intelligent Design of Product Lines in Holmes 2001 [Succi et al. 2001]
[S3] Scaling Step-Wise Refinement 2004 [Batory et al. 2004]
[S4] XVCL: a mechanism for handling variants in

software product lines
2004 [Zhang and Jarzabek

2004]
[S5] Tool Support for Software Variability Management

and Product Derivation in Software Product Lines
2004 [Gomaa and Shin

2004]
[S6] XML-Based Feature Modeling 2004 [Cechticky et al.

2004]
[S7] On the Implementation of a Tool for Feature

Modeling with a Base Model Twist
2006 [Shakari and

Møller-Pedersen
2006]

[S8] COVAMOF: A Framework for Modeling Variability
in Software Product Families

2004 [Sinnema et al.
2004]

[S9] Towards Systematic Ensuring Well-Formedness of
Software Product Lines

2009 [Heidenreich 2009]

[S10] Odyssey: A Reuse Environment based on Domain
Models

1999 [Braga et al. 1999]

[S11] A NUI Based Multiple Perspective Variability
Modeling CASE Tool

2010 [Bashroush 2010]

[S12] The DOPLER meta-tool for decision-oriented
variability modeling: a multiple case study

2011 [Dhungana et al.
2011]

[S13] XToF – A Tool for Tag-based Product Line
Implementation

2010 [Gauthier et al.
2010]

[S14] View Infinity: A Zoomable Interface for
Feature-Oriented Software Development

2011 [Stengel et al. 2011]

[S15] FeatureIDE: An Extensible Framework for
Feature-Oriented Software Development

2012 [Thüm et al. 2012]

[S16] FeaturePlugin: Feature Modeling Plug-In for
Eclipse

2004 [Antkiewicz and
Czarnecki 2004]

[S17] An Integrated Software Management Tool for
Adopting Software Product Lines

2012 [Park et al. 2012]

[S18] Kumbang Configurator – A Configuration Tool for
Software Product Families

2005 [Myllärniemi et al.
2004]

[S19] Towards a Model-Driven Product Line for Web
systems

2009 [Martinez et al.
2009]

[S20] PuLSE-BEAT – A Decision Support Tool for
Scoping Product Lines

2000 [Schmid and Schank
2000]

[S21] Moskitt4SPL: Tool Support for Developing
Self-Adaptive Systems

2012 [Gómez et al. 2012]

[S22] BeTTy: Benchmarking and Testing on the
Automated Analysis of Feature Models

2012 [Segura et al. 2012]

[S23] An Analysis of Variability Modeling and
Management Tools for Product Line Development

2007 [Capilla et al. 2012]

[S24] Visualization of variability and configuration
options

2012 [Pleuss and
Botterweck 2012]

[S25] ASADAL: A Tool System for Co-Development of
Software and Test Environment based on Product
Line Engineering

2006 [Kim et al. 2006]

[S26] RequiLine: A Requirements Engineering Tool for
Software Product Lines

2003 [von der Maßen and
Lichter 2004]

[S27] ToolDAy: A Tool for Domain Analysis 2011 [Lisboa et al. 2011]
[S28] The Linux Kernel Configurator as a Feature

Modeling Tool
2008 [Sincero and

Schröder-Preikschat
2008]

(Continued)

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:10 R. Bashroush et al.

Table III. Continued

Study ID Paper Title
Year of

Publication
Author(s)/
Reference

[S29] Automating Product-Line Variant Selection for
Mobile Devices

2007 [White et al. 2007]

[S30] Managing Feature Models with FAMILIAR: a
Demonstration of the Language and its Tool
Support

2011 [Acher et al. 2011]

[S31] WeEasy-Producer – Product Line Development for
Variant-Rich Ecosystems

2014 [Eichelberger et al.
2014]

[S32] OPTI-SELECT: an interactive tool for
user-in-the-loop feature selection in software
product lines

2014 [Yamany et al. 2014]

[S33] MPLM - MaTeLo product line manager: [relating
variability modelling and model-based testing]

2014 [Samih and Bogusch
2014]

[S34] Variability code analysis using the VITAL tool 2014 [Zhang and Becker
2014]

[S35] ViViD: a variability-based tool for synthesizing
video sequences

2014 [Acher et al. 2014]

[S36] VMC: recent advances and challenges ahead 2014 [ter Beek et al. 2012]
[S37] WebFML: synthesizing feature models everywhere 2014 [Bécan et al. 2014]

Table IV. Studies Excluded in the Final Review

Reasons for
Exclusion Paper Title

Year of
Publication

Author(s)/
Reference

EC3 FAMA Framework 2008 [Trinidad et al. 2008]
EC1 Development of a Feature Modeling Tool using

Microsoft DSL Tools
2009 [Fernández et al.

2009]
EC3 S.P.L.O.T. - Software Product Lines Online Tools 2009 [Mendonca et al. 2009]
EC3 V-Manage 2008 [Sellier et al. 2008]
EC2 PACOGEN : Automatic Generation of Pairwise

Test Configurations from Feature Models
2011 [Hervieu et al. 2011]

EC1 Variability Modeling in the Real: A Perspective
from the Operating Systems Domain

2010 [Berger et al. 2010]

EC1 MetaProgramming Text Processor [Campbell]
EC1 An Algorithm for Generating t-wise Covering

Arrays from Large Feature Models
2012 [Johansen et al. 2012]

EC2&EC3 Varmod-Tool-Environment 2005 [Pohl et al. 2005b]
EC3 Linux Variability Analysis Tools (LVAT) [She 2016]
EC2 VARMA–VARiability Modelling and Analysis

Tool
2012 [Russell et al. 2012]

EC3 ZIPC SPLM 2009 [ZIPC Feature 2009]
EC3 Hydra Tool 2009 [Hydra Feature

Modeling 2009]

data extraction form also shows the relevance of each of the extracted data elements
to the study research questions.

3. DATA EXTRACTION AND META-ANALYSIS

The next step after the data extraction step was the data synthesis and analysis step.
In this section, we provide meta-analyses of the primary studies relating to their
publication types, venues, trends, and overall characteristics. In Section 4, we analyze
the collected data to address the five main research questions of the study.

The first search of the systematic literature review resulted in 556 papers. The
application of inclusion/exclusion criteria in several iterations resulted in 37 papers for
the final review, which are listed in Table III.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:11

Table V. Data Extraction Form

Data Field
Related Concern/

Research Question
DE.Q1 Paper title Documentation
DE.Q2 Year of publication Documentation
DE.Q3 Type of publication (e.g. Journal, Conference, Workshop, etc.) Reliability of Review
DE.Q4 Publication outlet (conference name, etc.) Reliability of Review
DE.Q5 Paper brief description (synopsis) RQ1, RQ3
DE.Q6 The research rationale, challenges or problems as reported
in the paper

RQ3, RQ5

DE.Q7 Research Context (e.g. industry, academic, product, etc.) RQ4
DE.Q8 Tool Performance and Stability RQ2, RQ5
DE.Q9 Visualization technique RQ2
DE.Q10 Textual notation RQ2
DE.Q11 Usability RQ2
DE.Q12 Tool environment/Platform RQ2
DE.Q13 Integration (e.g. with DOORS, etc.) RQ2
DE.Q14 Scalability (ability to deal with large-scale models) RQ2
DE.Q15 Relevance (Research or Practice) RQ4
DE.Q16 The research limitations as reported in the paper RQ5

Fig. 4. Percentage of each publication type.

The primary studies included 18 conference papers, 6 journal papers, and 13 work-
shop papers. Figure 4 presents a pie chart showing the percentage for each publication
outlet. From the chart, it can be seen that conferences are more prominent venues
for research on variability management tools followed by workshops, whereas journals
seem to be less attractive outlets for research on tools. The 37 papers are spread over 24
different venues. This distribution further highlights the importance of this systematic
review as a manual search of well-known conferences or journals could not possibly
identify all the relevant literature.

Figure 5 shows the distribution of studies over time. Our search did not identify any
relevant paper published before 1997 and ended in 2014. The chart shows that there
has been a considerable surge in new tools over the most recent years covered by our
search.

4. DISCUSSION OF RESEARCH QUESTIONS

4.1. RQ1: What Tools have been Developed to Manage Variability in Software Product Lines?

Table VI provides a list of all the tools identified in the SLR in chronological order. A
detailed analysis of the different tools is provided in the following sections.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:12 R. Bashroush et al.

Fig. 5. Distribution of primary studies over time.

4.2. RQ2: What are the Characteristics of These Tools?

In this section, the tools identified are studied in terms of their development environ-
ment, support for transformations (between different formats), management of con-
straints and reasoning on variability models, and their proposed graphical and textual
notations.

4.2.1. Development Environment. The described tools are based on different development
environments. The most frequently named platform is Eclipse (16 studies), which
includes tools based on the Generic Eclipse Modeling Framework, GEMS (1 study);
Eclipse Rich Client Platform RCP application development (1 study); and the Eclipse
Modeling Framework, EMF (9 studies). Within the latter group, two studies reported
usage of textual modeling frameworks, i.e., EMFText [Heidenreich et al. 2009] and
Xtext [Eysholdt and Behrens 2010], and three reported usage of graph-oriented UI
frameworks, i.e., GMF [Eclipse 2016] and prefuse [Heer et al. 2005].

Two studies reported on tools based on commercial-off-the-shelf software, such as
Microsoft Excel or Word. Six tools directly support the usage of UML, out of which
two are based on commercial modeling tools, i.e., IBM Rational Rose and Rhapsody.
Additionally, one study reported on a tool based on the C-preprocessor (CPP) code
parser. Finally, three studies were web-based.

In terms of implementation languages, tools in 14 studies are based on Java, one tool
is implemented in C# (RequiLine [S26]) and one in C (the Linux Kernel Configurator
[S19]). The remaining 21 tools either do not state an implementation language or are
realized as extensions of existing tools.

4.2.2. Transformation. Twelve studies reported the usage of some transformation mech-
anism, e.g., to support generating output. Two used XSL ([S6] and [S22]); one used
dynamic loading of Simple XML Feature models (SXFM) [S32]; another used XML and
Java source files [S31]; and one used the DIMACS format (a widely used standard for
Boolean formulas in CNF) [S37].

4.2.3. Constraints and Reasoning. Fifteen studies reported on the usage of constraint
languages or the usage of automated reasoning based on constraints in the wider
sense. SAT solvers are used for instance by the S2T2 Configurator ([S24]), FAMILIAR
[S30], and VMC [S36]; a CSP solver is for instance used by Scatter [S29] and [S35];
and propositional formulas by [S37].

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:13

Table VI. Identified Tools with Their Year of Introduction (Based on Publication)

Tool Name Study ID Year of Introduction
DARE-COT [S1] 1997
Odyssey [S10] 1999
PuLSE [S20] 2000
Holmes [S2] 2001
RequiLine [S26] 2003
COVAMOF [S8] 2004
Feature Modeling Plug-In [S16] 2004
PLUSEE [S5] 2004
XML-Based Feature Model [S6] 2004
AHEAD [S3] 2004
XVCL [S4] 2004
KUMBANG [S18] 2005
BVR: Base-Variation-Resolution [S7] 2006
ASADAL (A System Analysis and Design Aid tooL) [S25] 2006
Scatter Tool [S29] 2007
VMWT [S23] 2007
L K C- Feature Modeling Tool [S28] 2008
FeatureMapper [S9] 2009
PLUM [S19] 2009
MUSA [S11] 2010
XToF – A Tool for Tag-based Product Line Implementation [S13] 2010
ToolDay [S27] 2011
View Infinity [S14] 2011
FAMILIAR [S30] 2011
DOPLER [S12] 2011
FeatureIDE [S15] 2012
ISMT4SPL [S17] 2012
BeTTy [S22] 2012
MOSKitt4SPL [S21] 2012
S2T2 Configurator [S24] 2012
Easy-Producer [S31] 2014
OPTI-SELECT [S32] 2014
MPLM-MaTeLo product line manager [S33] 2014
Variability code analysis using the VITAL tool [S34] 2014
ViViD: a variability-based tool for synthesizing video sequences [S35] 2014
VMC: recent advances and challenges ahead [S36] 2014
WebFML: synthesizing feature models everywhere [S37] 2014

Fig. 6. Breakdown of tools based on the type of notation supported.

4.2.4. Graphical and Textual Notations. Among the 37 tools identified in the primary stud-
ies, some supported graphical notations only (15 tools), others textual notations only
(13 tools), and few supported multiple notations and views (9 tools). Additionally, there
were some that did not provide enough details on the notations supported. Figure 6

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:14 R. Bashroush et al.

Fig. 7. Number of tools supporting each visualization type.

summarizes the breakdown of these notations based on the type of notation supported.
These are discussed in details in the following subsections.

4.2.4.1. Graphical Notations. The graphical notations adopted by the tools reported
in the primary studies can be classified under the following six visualizations:

FODA-like
File tree-like (vertical trees)
Graphs
Hyperbolic trees
Logic diagrams (logic gates)
UML

Figure 7 shows the number of tools supporting each visualization type. The figure
shows that FODA-like and File tree-like representations are still the most popular
approaches.

Tools in 11 studies are based on the FODA (Feature-Oriented Domain Analysis [Kang
et al. 1990]) approach. These are:

[S10], FODA with UML
[S11], FODA, hyperbolic trees, logic diagrams and file tree
[S14], FODA, zoom-able interface to color-coded source code
[S15] and [S25], FODA with color coding
[S17], FODA multiple trees per feature model
[S21], FODA with color coding and basic file tree
[S22], FODA basic feature tree with attributes
[S27], FODA, UML and basic file tree
[S30], FODA, basic file tree and coding area
[S37], FODA and basic file tree

Examples of these notations are shown in Table VII (snapshots taken from the
corresponding primary studies). As can be seen in the table, different tools use different
parts of the interface to display the FODA-like feature model. As such, they are all
prone to graphical overloading issues, where once the feature model size gets into the
hundreds, it becomes cumbersome to browse and manage.

Thirteen tools adopt file tree approaches of which 8 used basic right click functionality
to access information (tools reported in studies [S7], [S9], [S13], [S26], [S28], [S31],
[S32], and [S33]). Two studies are based on advanced customization (color, shapes, etc.)
of feature icons (tools in studies [S12] and [S16]). One study reports file trees with

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:15

Table VII. Tools with FODA-like Visual Notations

(Continued)

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:16 R. Bashroush et al.

Table VII. Continued

semi-circles representing relationships among different features [S8]. Flow maps are
also used in [S24].

A summary of these notations is shown in Table VIII. As can be seen in the table,
this family of tools tends to be more scalable due to the inherent nature of the file tree
navigation mechanism. However, they are not as good as FODA-like tools in enabling
better intellectual control over the model (textual abstraction vs. graphical abstraction).

Three tools support graph-based visualizations, one includes a configuration inter-
face using simple node-link graphs (user flows) with different objects [S2]; another tool
supports the use of different objects for dependencies (circles, triangles, etc.), file tree,
and coding area [S8]; and one tool is based on KOALA [van Ommering et al. 2000] like
graph visualization, i.e., it is architecture-centric [S18]. Additionally, one tool adopts
a logic diagram (schematics) visualization approach [S11]; another provides a UML-
based visualization [S5]; and one adopts hyperbolic tree visualization [S11].

Examples of these visualizations are shown in Table IX. Looking at the table, it can
be seen that notations that adopt hyperbolic views tend to have the best balance be-
tween scalability and intellectual control (abstraction). While managing to display the
structure of the complete feature model, hyperbolic trees allow for browsing the model
by displaying more details about nodes that are centered in the middle of the screen,
allowing for smoother navigation capabilities, especially when paired with Natural
User Interface (NUI) capabilities (e.g., pinching for zooming, etc.).

There are studies that do not provide enough details on the graphical notation used
in the tools described ([S19] and [S29]).

Overall, seven tools supported multiple views of the feature model, where combina-
tions of a graph, a file tree, and a coding area are used by [S8]; Koala and file tree
is reported in [S18]; a file tree and a coding area are used in [S13] and [S31]; FODA
and basic file trees are used in [S21] and [S37]; FODA, a basic file tree and a coding
area are reported in [S30], FODA, UML and a basic file tree are used by [S27]; and
FODA, hyperbolic trees, logic gates and a file tree are reported in [S11] as summarized
in Figure 8.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:17

Table VIII. Tools with File-Tree-Like Visualizations

(Continued)

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:18 R. Bashroush et al.

Table VIII. Continued

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:19

Table IX. Tools with Graph, Logic Diagrams, UML, and Hyperbolic Tree Visualizations

4.2.4.2. Textual Notations. For the textual notations, tools in 13 studies reported the
use of textual notations. These can be classified under three different categories:

Code-like: with syntax similar to programming languages
XML-based: notations that are based on XML
Code-based: notations that embed variability representation within source code
Figure 9 shows the number of tools supporting each textual notation type.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:20 R. Bashroush et al.

Fig. 8. Number of views per tool for tools with more than one view.

Fig. 9. Tools with various textual notations.

Code-like notations can be found in the tools described in [S3], [S18], [S28], [S30],
[S34] and [S36]. Example snapshots of these notations can be found in Table X.

XML-based notations are supported in [S4], [S8], and [S22]. Samples of these nota-
tions are presented in Table XI.

Finally, Code-based notations are found in [S7], [S13], [S14], and [S35]. These are
demonstrated in Table XII.

The preceding samples demonstrate that it can be difficult for humans to read all of
these descriptions, whether they are written in code-like, code-based or XML format.
When a textual notation is concise and easily readable and editable, many developers
often prefer to work with simple text editors over a graphical user interface; However,
for very complex notations (too complex to edit manually), it is essential to provide GUI-
based tool support. With regard to variability management tools, there is a need to de-
velop a standardized description format to allow better exchange of information among
the different tools (such as the CVL initiative, see http://www.omgwiki.org/variability/).
Competition between different tools would then be based on the quality of presenta-
tion and intuitiveness of navigation of such information by end-users, be it a textual or
graphical notation.

Finally, there were six further notations that did not provide enough details in the
paper about the textual notations they support, namely [S1], [S6], [S15], [S20], [S23],
and [S24].

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:21

Table X. Tools with Code-like Textual Notations

(Continued)

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:22 R. Bashroush et al.

Table X. Continued

4.3. RQ3: What is the Quality of the Research Conducted in the Reported Approaches?

We analyzed the quality of research using the quality scores (0, 0.5, 1) for the eight
quality questions (cf. Section 2.4) and also assessed how the studies address four
different quality attributes important for tools usability, integration, scalability, and
performance.

Table XIII presents the results of the quality assessment of the 37 studies included in
the final review according to the quality questions. A frequency analysis of the scores for
each quality question is presented in Figure 10. Most studies (92%) provide a rationale
for why the study was undertaken (Q1). Almost half of the studies (41%) describe the
context in which the research was carried out (Q2), 27% at least partially describe the
context. More than half of the papers (60%) described the variability management tool
in enough detail to be able to perform an in-depth analysis of the capabilities of the
tool (Q3). Only one paper did not describe the tool at least partially. Very few studies
(0.05%) present an evaluation of their proposed tools including feedback from end users
(Q4). Over 60% of the studies do not evaluate their tool at all. Less than a third of the
studies (30%) support substantive claims made in the paper with reliable evidence
(Q5). Less than a third (30%) of the studies compare and evaluate their own results
against related work (Q6). Finally, very few studies (16%) discuss the credibility of
their findings (Q7) and limitations (Q8).

In general, the authors provided a motivation and a description of the research
context, but papers lacked data to support the claims and findings. Also, authors seldom
provided a critical reflection of their results. Even though the tools were described well
in the papers, most variability management tools presented were not well evaluated,
especially with respect to feedback from end users. The lack of industrial validation
and evidence could be an important factor limiting the industrial adoption of these
tools.

Table XIV presents different quality attributes we focused on in our review (usabil-
ity, integration, scalability, and performance) and how well they were addressed by
the studies. The quality attributes were identified through an interview-based survey
conducted with a number of SPL practitioners who were asked to list their five most im-
portant attributes of an SPL tool. Figure 11 shows the frequency analysis of the results
for each quality attribute. As can be seen, most studies do not mention the attributes
explicitly with only a few studies providing contributions to the different areas of the
quality attributes. Interestingly, none of the tools contributes and evaluates usability.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:23

Table XI. Tools with XML based textual notations

(Continued)

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:24 R. Bashroush et al.

Table XI. Continued

Table XII. Tools with Code-Based Textual Notations

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:25

Table XIII. Results of the Quality Assessment
of the Primary Studies

No (0) Partial (0,5) Yes (1) Average Score
Q1 1 2 34 0.95
Q2 12 10 15 0.54
Q3 1 14 22 0.78
Q4 23 12 2 0.22
Q5 11 15 11 0.50
Q6 19 7 11 0.39
Q7 16 15 6 0.36
Q8 23 8 6 0.27

Fig. 10. Frequency analysis of quality scores for each question.

Table XIV. Quality Attributes Addressed by Studies

Does Not Mention (0) Mentions (1) Contribution (2) Contrib. and Eval. (3) Average Score
Usability 19 8 10 0 0.76
Integration 21 0 13 3 0.97
Scalability 24 8 4 1 0.51
Performance 24 4 8 1 0.62

Fig. 11. Frequency analysis of scores for each quality attribute.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:26 R. Bashroush et al.

Fig. 12. Research context of primary studies.

Few evaluate integration and only one study evaluates scalability and performance,
respectively. Even though quite a few tools contribute to the various quality attributes,
the lack of attention of researchers to these quality attributes (not explicitly mention-
ing them or evaluating them), which are high up in the priority list of practitioners,
can be seen as another potential reason behind the very limited industrial adoption of
these tools.

4.4. RQ4: What is the Context of Research?

This section discusses the context of the research in the surveyed studies, i.e., whether
the research is conducted in an academic or industrial context, the industrial domain
of focus, and the covered main activities in a product line approach (scoping, analysis,
implementation, testing).

4.4.1. Research Context: Academia vs. Industry. The distribution of the research context
of the studies is presented in Figure 12. The figure shows that most studies (68%) have
been conducted in an academic context. Only 16% of the studies are joint industrial-
academic endeavors. In 16% of the studies, no information was provided on the research
context. Table XV presents a list of all studies with their research context.

Although the primary research context of some studies was academic, few still had
practical relevance. Figure 13 shows the distribution of the relevance of the primary
studies. Almost half of the studies (41%) are relevant to academia only. 36% of the
studies are relevant to both academia and industry, with 10% of the studies relevant
to practice only. Finally, 13% of the studies provided no sufficient data to be classified.

4.4.2. Focus and Industrial Domain. In terms of a potential specific industrial application
domain, most of the surveyed studies (86%) can be considered as generic, i.e., not
focusing in a particular sector. Just 14% of the studies are specific enough to be linked
to a particular domain (see Table XVI). Furthermore, the application domains of the
examples presented in the studies were quite diverse (see the rightmost column of
Table XVI).

4.4.3. Covered Product Line Activities. We analyzed the surveyed studies with respect to
the supported product line activities. It is often not a clear-cut decision whether an
approach supports a particular activity. For instance, many approaches for product
configuration assume that configuration decisions are made by considering require-
ments in some way. Additionally, it is difficult to clearly distinguish the activity of
scoping (defining the boundaries of a product line and its targeted market segment)
from domain analysis and the process of defining the available configuration options.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:27

Table XV. Research Context of the Primary Studies

Academia Industry and academia No information
S1 X
S2 X
S3 X
S4 X
S5 X
S6 X
S7 X
S8 X
S9 X
S10 X
S11 X
S12 X
S13 X
S14 X
S15 X
S16 X
S17 X
S18 X
S19 X
S20 X
S21 X
S22 X
S23 X
S24 X
S25 X
S26 X
S27 X
S28 X
S29 X
S30 X
S31 X
S32 X
S33 X
S34 X
S35 X
S36 X
S37 X

Fig. 13. Relevance of primary studies.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:28 R. Bashroush et al.

Table XVI. Industrial Domain of the Primary Studies

Focus Industrial domain Domain of example
S1 Domain analysis Generic —
S2 Domain analysis Generic —
S3 Conceptual model of

feature-oriented programming
Generic Calculators, military

simulators
S4 Variability realization Generic Computer aided dispatch

systems
S5 Variability modelling Generic Factory automation,

e–commerce
S6 Feature modelling Generic —
S7 Variability modelling Generic Product line of watches
S8 Variability modelling Generic Intelligent traffic systems
S9 (Consistency in) Variability

modelling
Generic —

S10 Variability modelling Generic —
S11 Variability modelling Generic —
S12 Variability modelling Generic Steel plants
S13 Variability realization Generic Satellites
S14 UI for Variability realization Generic —
S15 Variability modelling Generic Graph library
S16 Feature modelling Generic —
S17 Variability modelling Generic Surveillance cameras (toy

example)
S18 Configuration Generic Automotive, weather

station network
S19 Configuration, generation of

products
Web-based applications Media

S20 Scoping Generic Planning software
(fictitious)

S21 DSPL for self-adaptive systems Generic —
S22 Testing of feature model analysis

techniques
Feature model analysis
techniques

—

S23 Survey of Tools Generic —
S24 Configuration Generic Automotive software

(fictitious)
S25 Software Product Line Engineering Generic Service robots
S26 RE for product lines (i.e., combined

with feature modeling)
Generic —

S27 Domain analysis Generic Electronic submission
system

S28 Configuration Linux kernel —
S29 Configuration, Optimization of

configuration
Mobile applications —

S30 Configuration Generic —
S31 Configuration, product derivation Generic Yard management system
S32 Configuration, Optimization of

configuration
Generic —

S33 (Introducing variability to)
Model-based Testing

Generic Aerospace

S34 Analysis of Variability Generic —
S35 Product derivation in specific

domain (video)
Generation of customized
videos

—

S36 Model checking of product lines Generic Bike sharing
S37 Synthesis of feature models Generic Wikis

Generic: 32 out of 37
(86%)
Specific domain: 5 out
of 37 (14%)

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:29

Table XVII. Covered Product Line Activities

Scoping and
Requirements

Domain Analysis(incl.
Definition of a

Configuration Space)
Domain

Implementation

Testing and
V&V(excl.

Consistency of
Artifacts)

S1 (x) x — —
S2 (x) x — —
S3 — x x —
S4 — (x) x —
S5 x x x —
S6 — x — —
S7 — x x —
S8 — x x —
S9 — (x) x —
S10 x x (x) —
S11 — x — —
S12 — x x —
S13 — — x —
S14 — — x —
S15 x x x —
S16 — x — —
S17 x x (x) —
S18 — x — —
S19 (x) x x —
S20 x (x) — —
S21 — (x) — —
S22 — x — x
S23 — x x —
S24 — x — —
S25 (x) x x x
S26 — x — —
S27 x x (x) —
S28 — x — —
S29 — x — —
S30 — x — —
S31 — x x —
S32 — x — —
S33 — x (x) x
S34 — x x —
S35 — x x —
S36 — (x) — x
S37 — x — —
Total 10 35 20 4
Percentage 27% 95% 54% 11%
x = fully covered, (x) = partly covered, — = not covered.

Table XVII shows an overview of which approach supports which product line activ-
ity. We distinguish between “Scoping and Requirements”, “Domain Analysis”, “Domain
Implementation”, and “Testing/ Verification & Validation”. It is worth noting that “Do-
main Analysis” includes activities leading to the definition of a configuration space and
the available options. “Testing/V&V” addresses the quality of the products and their
implementation, e.g., testing products for defects. This does not include techniques
addressing the consistency between artifacts.

Figure 14 provides the corresponding overview: 27% of the studies can be considered
addressing aspects of “Scoping and Requirements”. Not surprising, given the scope of
this survey, almost all studies (95%) address Domain Analysis in one way or another.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:30 R. Bashroush et al.

Fig. 14. Covered product line activities.

54% of studies consider aspects of “Domain Implementation”, and only 11% address
“Testing/Verification & Validation”.

4.5. RQ5: What are the Main Challenges Faced by Current Product
Line Management (PLM) Tools?

Our last research question aimed at analyzing the main challenges faced by current
tools as well as limitations of the tools. We, therefore, analyzed the 37 selected stud-
ies regarding the challenges and limitations of current variability management tools
they discuss. Using the coding technique [Seaman 1999], we first scanned the stud-
ies looking for keywords “challenge”, “issue”, “limitation”, and “drawback” and then
extracted the related text (statements on challenges and/or limitations). This allowed
us to find out which studies do not discuss any limitations or challenges (no state-
ments extracted); which studies at least mention challenges or limitations (statements
extracted list challenges or limitations, but do not discuss them); and which studies
actually discuss challenges or limitations (statements extracted list and discuss chal-
lenges or limitations). 56% do not discuss limitations at all, 27% at least mention some
limitations without further discussing them, and only about 17% actually discuss lim-
itations. We find this a general weakness of publications on variability management
tools, i.e., that they do not discuss their own limitations, which makes it hard to assess
tools’ usefulness.

Challenges are more frequently discussed (73% provide a discussion, 13% at least
mention challenges, only 13% do not even mention challenges), i.e., authors mention
what was the challenging part of implementing their tool and/or what challenges their
tool addresses.

We eventually analyzed the extracted statements and (through discussion and refine-
ment among researchers) came up with ten categories for challenges and limitations,
in which we could group the extracted statements on challenges and limitations dis-
cussed in detail in the following text (ordered by the number of studies providing input
to the category).

The key challenge of variability management tools is scalability of models, i.e., how to
develop variability models that are still useful despite their size and complexity. 40% of
the selected studies discuss this challenge and suggest different solutions as described
earlier. The second most discussed challenge is checking models for consistency and
correctness (23%), especially how to keep the models consistent with the underlying
architecture and check that the models represent the variability of the product line cor-
rectly. Mapping problem and solution space (20%) is also discussed as a key challenge
to be addressed by variability management tools. Many tools only take care of creating
and managing the variability models representing variability but not of how to map
variability (e.g., represented by features or decisions) with the actual artifacts realizing
this variability. Visualization/Graphical Overload is discussed as a challenge by 17% of

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:31

the selected studies. Variability management tools must provide ways to cope with the
size and complexity of variability models to help users suffering from graphical over-
load with visualizations. Other important challenges are usability and maintenance
and evolution of variability models (both 13%). Addressing both challenges is essential
for tools to be useful and successful in practice in the long run. Integration of variability
management and (legacy) software (development), i.e., the question of how to adopt a
variability management tool in practice, is also still an important issue and discussed
by 10% of the selected studies. Process Improvement/Automation through variability
management (7%) is explicitly discussed by 2 selected studies, even though this is ac-
tually the key goal of variability management tools anyway. Two further challenges,
which are discussed by one study each, are supporting the modeling of non-functional
properties in variability management (e.g., resource consumption constraints) and com-
pliance (with standards/quality policies/regulations).

4.5.1. Scalability of (Variability) Models (12 Studies). In an initial discussion, we had called
this category “working with one large model vs. working with several separate models”.
However, through our discussion we found out that the statements we categorized here
actually are all about challenges regarding the scalability of (variability) models.

For instance, the authors of [S17] report experiences from empirical case studies
that confirm that the complexity of variability management stems from the need to
work with (too) large models. Study [S4] highlights the importance of compositional
approaches to product line representation/implementation to address this challenge.
Study [S21] report on a tool supporting variability management in self-adaptive sys-
tems, which again adds to the challenge of scalability of models.

As discussed by the authors of [S3] a key “challenge is to show how scaling can
be accomplished in a principled manner so that product line variability management
tools are not just ad-hoc collections of tools using an incomprehensible patchwork of
techniques”. More specifically, they argue that “generators are a technological state-
ment that the development of software in a domain is understood well enough to be
automated. However, we must make the same claim for generators: The complexity
of generators must also be controlled and must remain low as application complexity
scales; otherwise, generator technology will unlikely have wide-spread adoption.”

The BVR tool [S7], for instance, proposes to have separate models related to a base
model instead of one large model or completely separate models to allow working with
product lines of a realistic size. DOPLER [S12] allows both, creating one big model and
several small but related models. The DSL tool FAMILIAR [S30] suggests separating,
relating, and composing several feature models while automating the reasoning on
their compositions. FAMILIAR focuses mainly on textual representation because, as
they claim, this favors readability of the specified operations and leads to more usabil-
ity and productivity when dealing with compositional operations on feature models.
They, however, also argue that graphical visualization has proved to assist users, for
example, during the configuration process. This is why they integrated their DSL with
the Feature IDE tool. The author of [S11] presents a NUI-based multiple perspective
variability modeling tool to help working with large-scale models, i.e., multi-touch in-
terfaces to allow working with large models (and their visualizations/different views) to
address the scalability challenge. ViewInfinity [S14] provides seamless and semantic
zooming of different abstraction layers of an SPL. The tool described in [S5] provides
multiple product line views (using the feature model as a unifying view). Study [S8]
focuses on the hierarchical organization of variability, the first class representation
of simple and complex dependencies (“dependencies that affect the binding of a large
number of variation points, e.g., quality attributes” [S8]); and argues that relations be-
tween dependencies should be explicitly represented. The Odyssey Reuse environment

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:32 R. Bashroush et al.

[S10] specifies “patterns based on both architectural styles and specific information from
the application domain to create a complete reuse environment, which defines software
architectures and conceptual model representations on a high level of abstraction.”

4.5.2. Checking Models for Consistency and Correctness (7 Studies). Checking the models
underlying the variability management tools for consistency and correctness is con-
sidered as a key challenge by seven of the 30 studies. For instance, the authors of
RequiLine [S26] argue that semantic information is needed for an automated con-
sistency check in variability management tools. Study [S5] highlights that consistency
checking among the multiple views in a product line (as provided by their tool) is essen-
tial. FeatureMapper [S9] provides diverse visualizations to support the SPL engineer
in verifying the correctness of the models (feature models, mapping models, solution
space models) and argues this is very important. The authors of Odyssey [S10] suggest
specifying the “operations that will be performed on models, as well as to systematize
these operations, to facilitate the consistent creation of models.” The DOPLER tools
[S12] have an integrated consistency checking component that checks the consistency
on different levels, i.e., in problem space, in solution space, and between problem and
solutions space. ToolDAy [S27] is one of the few studies that discuss their limitations,
i.e., that complex consistency rules cannot be described in their tool. The authors of
study [S3] highlight the use of model checkers in their tool as important future work.

4.5.3. Mapping Problem and Solution Space (6 Studies). Six studies highlight the challenges
and limitations of mapping problem and solution space, i.e., mapping the variability
representation with the actual product line architecture. For instance, ISMT4SPL
[S17] discusses “traceability between decisions in variability/feature models and the
corresponding implementation artifacts” as a key challenge for variability manage-
ment tools. The authors of study [S16] report about a limitation of their tool, i.e., that
the support for mapping problem and solution space is missing. FeatureMapper [S9]
explicitly focuses on this aspect by introducing mapping models to map feature models
and solution space models. Kumbang [S18] explicitly integrates architecture models
(i.e., Koalish, an architecture description language/component model based on Koala
ADL but adding variability concepts) with feature models within its tool support. DO-
PLER [S12] uses explicit asset models to represent the solution space and links these
models with the problem space decision models via so-called inclusion conditions. Code
tagging tools such as XToF [S13] do not map both spaces but rather integrate the rep-
resentation of the problem space into the solution space, or, as could be argued, just
represent solution space variability (i.e., variability in code).

4.5.4. Visualization/Graphical Overload (5 Studies). Five studies argue that visualization of
variability easily leads to a graphical overload of the tool user and is a key challenge.
For instance, the author of study [S11] argues that “it is important for a variability
management mechanism to be able to extract and present relevant information about
a variability model in dedicated views for different groups of stakeholders (users, sys-
tem analysts, developers, etc. to alleviate the graphical overload when showing all the
information in one view.” ViewInfinity [S14] provides seamless and semantic zooming
of different abstraction layers of an SPL. Study [S8] argues that variability models
should “represent variation points as first class entities in all abstraction layers (from
features to code); provide a hierarchical organization of variability; focus on the first
class representation of simple and complex dependencies (dependencies that affect the
binding of a large number of variation points, e.g. quality attributes); and explicitly
represent dependencies”. ST2T [S24] provides sophisticated visualization and interac-
tion techniques to address the challenge that handling variability and configurations is
hard due to the complexity on a cognitive level as human engineers reach their limits

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:33

in identifying, understanding, and using all relevant details. Study [S16] highlights
this as a key limitation of their tool, i.e., that a graphical representation missing.

4.5.5. Maintenance and Evolution of Variability (Models) (4 Studies). Four studies report on
the challenges and limitations regarding maintenance and evolution of variability
(models). The BVR tool [S7] suggests to not use annotations of features but “relations
between feature models and elements of a base model” to express/capture variability.
Study [S30] confirms that with current technologies manipulating and evolving large-
scale feature model is challenging and error-prone. Study [S29] argues that not all
devices and their characteristics can be known in advance—“their unique capabilities
must be discovered and dealt with efficiently and correctly”. Study [S6] reports that
ambiguities in existing feature meta-models negatively affect maintenance.

4.5.6. Usability (4 Studies). Only one study, RequiLine [S26], mentions usability to be
a limitation of their tool support. However, most tools suffer from this limitation in
our own experience. The authors of [S4] admit that the understandability of their
variability modeling language/tool must be improved. DOPLER [S12] puts a special
emphasis on usability, however, only on the configuration side, i.e., the configuration
tools are optimized to allow their use by sales staff. ST2T [S24] provides sophisticated
visualization and interaction techniques to make complex variability models usable by
engineers.

4.5.7. Integration of Variability Management and Legacy Software (3 Studies). Three studies
report about the challenge of integrating variability management support into legacy
software. The development of XToF [S13], for instance, was motivated by industrial
needs. One of the key goals was to develop support for variability management that
does not require changing current development practices in the organization requesting
support. Thus, a code-tagging approach was applied. The authors argue that it is
important to provide tool support for variability management, but this support must
be nicely integrated with existing tools and processes. The development of FeatureIDE
[S15] was challenged by the difficulty to integrate variability management and Eclipse.
The author of the ToolDAy [S27] argues that supporting integration with tools like
DOORS is essential (though not supported by ToolDAy).

4.5.8. Process Improvement/Automation through Variability Management (2 Studies). Two stud-
ies describe the challenge of improving development processes through automation
provided by variability management tools. The authors of study [S19], for instance, ar-
gue that “on the one hand, the non-existence of a unified way to introduce the contents
[leads to] an unnecessary waste of time for the employees to learn new technologies
and feel comfortable with the new platforms. On the other hand, a rapid prototyping
platform is also desirable for showing their customers a working prototype at an early
stage.” The authors of study [S1] highlight the need for models that are expressive
enough for automation.

4.5.9. Compliance (with Standards/Quality Policies/Regulations) (1 Study). Study [S13]
stresses the need for compliance, i.e., they argue that it is also important that variability
management/modeling tools do not violate with standards/quality policies/regulations
in the organizations in which they are used.

4.5.10. Non-Functional Properties in Variability Management (1 Study). Study [S29] argues
that resource consumption constraints are not taken into account by existing configu-
ration approaches and tools.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:34 R. Bashroush et al.

5. COMMERCIAL TOOLS AND TOOL ADOPTION IN INDUSTRY

In addition to our SLR, we conducted a web search on commercially available variability
management tools as well as studies on tool adoption in industry/practice. In this
section, we briefly discuss our findings under RQ1 and RQ2 (cf. Sections 2 and 4).
While RQ3 and RQ4 are irrelevant to this section, RQ5 cannot be addressed due to the
lack of primary studies reporting challenges in relation to these tools (and our inability
to provide our own assessment in a secondary study such as an SLR).

5.1. Commercial Variability Management Tools

5.1.1. RQ1: What tools have been developed to manage variability in software product lines?. We
explicitly focus on tools developed to support variability management in software prod-
uct line engineering, thus leaving out commercial tools developed in other communities
such as the CWAdvisor [Felfernig et al. 2001] or the SAP Configurator [SAP Configura-
tor 2016], which follow an AI-based process or MetaEdit+ [Arion and Tolvanen 2004],
which is a domain-specific language and code generation environment. Some industries
have extended other commercial tools with support for variability management [Berger
et al. 2013], typically without following a particular product line engineering process.
For example, IBM Rational DOORS [IBM Rational DOORS] comes with a requirements
management add-on that supports the definition of variability within requirements
documents. Another example is SparxSystems Enterprise Architect [SparxSystems
Enterprise Architect 2016] which has also been extended with variability management
support. Another common industrial practice is the use of Microsoft Excel or Microsoft
Word to document variability.

All these solutions or practices to variability management work very well within the
context they were developed for; however, they do not follow any particular product line
engineering approach. We were only able to identify two commercial tools developed for
product line variability management, namely, pure::variants [Beuche 2016] and Gears
[Krueger and Clements 2014].

5.1.2. RQ2: What are the Characteristics of These Tools? pure::variants [Beuche 2016;
Pure-Systems 2016] is developed by pure-systems GmbH in Magdeburg, Germany. The
tool supports variant management and product configuration based on feature models
and has a strong focus on interoperability and extensibility. For example, the tool can be
integrated in the Eclipse IDE, used with a web browser, as a command line client, and
even in a custom application. Several extensions to existing commercial-off-the-shelf
tools exist, e.g., to DOORS or SAP. Four types of models can be created and managed
with pure::variants: (1) Feature Models that represent the variability within a system;
(2) Family Models that represent the variants of assets that can be selected; (3) Variant
Description Models that are used to store the selected features and their values; and
(4) Result Models based on 1–3 that represent one concrete instance derived from a
product line. Constraints on model elements can be defined using a comprehensive
dialect of the language prolog. A Prolog-based constraint solver then allows validating
selected configurations. The main benefits of pure::variants are: (i) the strong focus on
interoperability and extensibility; (ii) the high number of available extensions; and (iii)
the comprehensive support for model checking and validation (also during product con-
figuration). There have been various reports of successful deployment of pure::variants
in industry.

Gears [Krueger and Clements 2014; BigLever 2016] is a commercial tool developed
by BigLever Software Inc., Austin, Texas, USA. The tool has been developed in Java
and supports the three-tiered methodology proposed by Krueger [2007]. The tool allows
defining arbitrary reusable software assets and a product feature profile that describes
products in terms of features. Gears focuses on products, where feature profiles define

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:35

the products that can be built from assets and the optional and alternative choices that
can be made for each product. Product configuration is supported by the Gears Config-
urator, which automatically assembles and configures assets to produce products based
on feature choices made using feature profiles. Gears can be tailored to different en-
vironments with parameter sets representing different kinds of variability. Dependen-
cies are modeled as global constraints that are checked during configuration. The main
benefits of Gears are: (i) its strong product focus; (ii) the possibility to use arbitrary as-
sets; and (iii) its structured foundation based by the three-tiered methodology. As with
pure::variants, there are various reports of successful adoption of Gears in industry.

5.2. Wider Tool Adoption in Industry

Djebbi et al. [2007] report findings of a study on the ability of product line management
tools to answer industry needs. They identified 12 tools through an unsystematic
search (we cover most of them on our SLR) but only analyzed four tools in detail
based on their availability. These four tools were RequiLine [S26], pure::variants
[Beuche 2016], XFeature [S6] and DOORS-TREK (an add-on to IBM Rational DOORS)
[DOORS-TREK 2013]. Djebbi et al. [2007] describe these tools and discuss the support
of these tools for variability modeling as well as the support for management (such
as reporting capabilities) they provide. They conclude that tools developed in industry
or in industry projects work well for the context they have been developed for but are
hard to apply in other contexts.

Berger et al. [2013] report the results of a survey on variability modeling in industrial
practice. Among other questions, they asked industrial practitioners what variability
modeling tools they use. Respondents could select from 10 particular tools or specify an
open answer. pure::variants [Beuche 2016] was the most used tool, followed by Gears
[Krueger and Clements 2014]. From the tools we identified in our SLR, FeatureIDE
[S15], DOPLER [S12], X-Feature [S6], and AHEAD [S3] were the only ones mentioned
by respondents. This confirms our findings on the difficulty of research tool adoption
in industry. As Berger et al. [2013] conclude “all other tools play only a minor role in
the participating projects” and were only reported as being used once or twice. The
answers of the 42 survey respondents were analyzed in detail and it was found that
many respondents use “other open source tools”, “other commercial tools”, or “home-
grown domain-specific tools.” A key finding regarding variability modeling tool support
of the survey was that there exists a wide variety of home-grown solutions developed
in industry that are unknown to researchers.

Lettner et al. [2013] confirm the findings of Berger et al.’s survey by reporting that
industry often develop custom solutions to automate the configuration process of their
variable software systems. These solutions are often not based on variability models
but describe configuration knowledge directly in code or in simple XML files. Com-
paring a custom-developed with a model-based configuration approach led them to
the conclusion that using a model-based solution could be beneficial to industry. For
instance, it would help to decouple configuration UI and variability information and
make the approach more adaptable and extensible.

6. STUDY LIMITATIONS AND THREATS TO VALIDITY

In this section, we discuss the limitations of this study and any threats to its validity. Of
particular importance are some of the inherent limitations of the adopted SLR research
methodology [Kitchenham et al. 2009] and its execution.

The first limitation is the comprehensiveness of the search process and the threat
that some relevant primary studies, and subsequently tools, might have been missed.
This could be due to the varying use of terminology among different communities, which
might not have been captured by the formulated search string (e.g., approaches that

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:36 R. Bashroush et al.

use constraint programming to represent configuration problems). To address this, we
extended the traditional SLR search protocol and introduced a number of mitigating
measures. First, and in addition to searching main publisher websites as discussed in
Section 2, we ran our search string on multiple general indexing search engines, such
as Google Scholar and Scopus, to ensure the widest coverage possible, especially given
that different search engines use different search and ranking algorithms. As described
earlier, we found a total of 556 papers, which were first analyzed by one researcher
to exclude non-SPL related papers. To address the threat that important publications
might have been excluded in this step, forward and backward reference checking was
used on the remaining publications to try and follow any potential leads to related
work that might have been missed. Finally, manual searches were conducted on the
proceedings of known outlets in the area and on the outputs of active researchers in
the field.

Second, and as with all SLRs, our inclusion and exclusion criteria stipulated that
primary studies had to be peer reviewed to qualify. This meant that gray literature,
theses, and commercial tools, which are not covered by peer-reviewed publications
(providing enough details about the tool), were not included. Even though some SPL
tools, such as the ones from BigLever and Pure::Systems, have also been published
in peer-reviewed papers [Krueger and Clements 2014; Beuche 2016], they tend to be
short tool demonstration papers. This is understandable given the interest in protect-
ing the intellectual property embedded in the technical details of such tools. How-
ever, to assess the impact of this on our conclusions, we conducted a comprehensive
search on commercially available tools (see Section 5) and could not identify more
than two tools (following a product line engineering process) and a few publications
discussing the practical use of tools in industry [Berger et al. 2013; Krueger 2007;
DOORS-TREK 2013]. Given the study examined thirty-seven tools, the impact on the
analysis and conclusions, had the commercial tools been included, would have been
limited.

Finally, we only covered literature published in English. This would automatically
put us at risk of missing tools published in other languages. Although we had limited
options to address this issue due to the language barrier, we believe that it is currently
highly unlikely for significant research to remain unpublished in English for long.

Beyond the above limitations impacting the scope and completeness of the dataset
upon which our analysis was conducted, threats to the analysis process and the con-
clusions drawn can be discussed under four main headers, mainly construct, internal,
external and conclusion validity [Matt and Cook 1994].

Construct and internal validity relate to the robustness of the implementation of
the research methodology adopted, which is the SLR methodology in our case. Some
of these threats have already been discussed in this section such as the completeness
of the search process. Another important validity problem in SLRs is author bias.
This has been acknowledged and addressed from the onset of this work given that a
number of the researchers involved in this study are active in the research area and
produced related tools. Accordingly, specific measures were put in place to eliminate
any potential bias. This included having multiple reviewers for each primary study.
When considering a primary study that was authored by any of the researchers
involved this study, these researchers were excluded from the decision-making (for
inclusion/exclusion) and data extraction related to their own work. An external
researcher (not one of the authors) then validated the overall review process to ensure
its independence before it was applied.

Finally, external validity relates to the applicability of the results of the study beyond
its initial scope and conclusion validity relates to the robustness of the conclusions
drawn. One of the main threats here is potentially influencing the analysis process in

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:37

order to produce conclusions that are aligned with the researchers’ initial hypothesis
and views. In our case, this was not an issue as the work started with open research
questions without any pre-formulated stance. Conclusions made were all based on
grounded theory [Martin and Turner 1986] and were reported along with the data
upon which the analysis was based.

7. RELATED WORK

There is a number of systematic studies (i.e., systematic literature reviews and system-
atic mapping studies) focusing on various aspects of software product lines. Table XVIII
provides an overview of such studies. These studies often do not consider tools at
all or consider tool-support as one of multiple aspects (see the rightmost column in
Table XVIII).

The closest to our work is the survey by Lisboa et al. [2010] on domain analysis tools.
They survey 19 tools and cover up to 2005. Our coverage is more extensive, both in
terms of surveyed tools as well as the covered period.

8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

8.1. Summary

We reported on a survey in which we analyzed 37 variability management tools iden-
tified using a systematic literature review to understand the tools’ characteristics,
maturity, and the challenges in the field. The tools are based on diverse development
environments, apply diverse technologies, and support different variability modeling
approaches. Most tools support a feature modeling approach. Different graphical and
textual notations are provided by the tools, with a focus on tree-based visualizations
of features. Only few tools provide multiple views, e.g., a graphical view of features
together with a text-based representation of source code variability. While most stud-
ies about variability management tools provide a good motivation and a description of
the research context they often lack data, e.g., from empirical studies with tool users,
to support the claims made and the findings reported. Also, studies seldom provide a
critical reflection of the presented tools and their limitations. Most variability manage-
ment tools were not well evaluated, especially with respect to feedback from end users.
Quality attributes important for the practical use of tools such as usability, integra-
tion, scalability, and performance are out of scope for most of the analyzed studies. This
might be explained by the fact that most studies have been conducted in an academic
context. Only 3 out of the 37 studies were joint industrial-academic endeavors.

8.2. Future Research Directions

The studies analyzed in this survey discuss particular challenges related to their fo-
cused aspect of variability management. We have performed a comprehensive analysis
of these challenges and reported on the details in Section 4.5. From these challenges,
we identified few potential research directions that require further investigation.

8.2.1. Scalability and Complexity. A challenge that has been commonly reported is the
scalability and complexity of models. This can occur in various forms, e.g., when han-
dling one very large model or groups of multiple smaller models, with dependen-
cies between them. The resulting research challenges can be roughly clustered into
two groups: (1) computational complexity/scalability (tools and techniques to handle
very large models, performance of automated mechanisms) and (2) cognitive complex-
ity/scalability (handling of very large models by humans, interacting with large mod-
els, comprehending large models and the consequences of changes/decisions). For the
first group, computational challenges, research on techniques for processing very large

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:38 R. Bashroush et al.

Table XVIII. Overview of Systematic Studies in Product Line Engineering and Their Coverage
of Tool-oriented Aspects

Reference
Year of
publ.

Type of
study

Focus (in a product
line context)

Covered
period

Tool-oriented
aspects

[Alves et al.
2010]

2010 SLR Requirements
engineering

1990–2009 Availability of RE
tools

[Bakar et al.
2015]

2015 SLR Feature extraction
from natural
language

2005–2014 (Brief section on) tool
support in approaches
for feature extraction

[Castelluccia
and Boffoli
2014]

2014 Map Service-oriented
SPL

2008–2012 —

[Chen and
Babar 2011]

2011 SLR Variability
management

1990–2007 —

[da Mota
Silveira Neto
et al. 2011]

2011 Map Testing 1993–2009 (Brief section on) test
automation tools

[da Silva et al.
2011]

2011 Map Agile SPL 2005–2010 “Tool support” as 1 out
of 17 practice area
facets based on the
SEI framework

[dos Santos
Rocha and
Fantinato 2013]

2013 SLR Business process
management

2003–2012 —

[Engström and
Runeson 2011]

2011 Map Testing 2001–2008 “Tool” as 1 out of 5
contribution types

[Guedes et al.
2015]

2015 Map Variability
management in
DSPL

2006–2015 “Tool support” as
criterion (yes/no)

[Holl et al.
2012]

2012 SLR, ES Multi product lines 1999–2010 “sharing and
deploying product line
models and tools” as 1
out of 7 reported
capabilities(Brief
section on) “Tool
support for modeling
multi product lines”

[Khurum and
Gorschek 2009]

2009 SLR Domain analysis 1998–2007 —

[Laguna and
Crespo 2013]

2013 Map PL evolution,
re–engineering,
and refactoring

1998–2011 Tools for model
extractionTools for
re-engineering of
legacy codeTools in
SPL-related
refactoring
papersMapping of
considered aspects (in
reengineering legacy
systems and SPL
refactoring) to tools

[Lisboa et al.
2010]

2010 SLR Domain analysis
tools

1993–2005 Survey of 19 domain
analysis tools

[Lopez-
Herrejon et al.
2015a]

2015 Map Testing
(Combinatorial
Interaction
Testing, CIT)

2006–2014 Names identification
of “techniques,
algorithms, and tools
used for CIT in SPLs”
as goal, but does not
address tools
specifically.

(Continued)

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:39

Table XVIII. Continued

Reference
Year of
publ.

Type of
study

Focus (in a product
line context)

Covered
period

Tool-oriented
aspects

[Lopez-Herre-
jon et al.
2015b]

2015 Map Search-based SE 2001–2014 “Tool support” as 1 out
of 10 classification
criteriaDiscussion
identifies “need for
better tooling support”

[do Carmo
Machado et al.
2014]

2014 SLR Testing 1998–2013 Discusses whether
tool support as
available (for selection
of products to test, to
handle test of
end-product
functionalities)

[Mohabbati
et al. 2013]

2015 Map Service-oriented
SPL

2000–2011 “Tooling support” as 1
out of 8 contribution
type

[Montagud
et al. 2012]

2012 SLR Quality attributes 1996–2010 “Tool support” as
criterion
(Manual/Automatic)

[Myllärniemi
et al. 2012]

2012 SLR Quality attributes 2000–2010 —

[de Sousa
Santos et al.
2015]

2015 Map, Ex Textual use case 2003–2014 Identify development
of tool support as
future work

[Sepúlveda
et al. 2016]

2016 SLR Requirements
engineering
(Modeling of
requirements)

2000–2013 “Tool support” as one
criterion

[Soares et al.
2014]

2014 SLR Non-functional
properties

2003–2013 Discuss “evidence [as]
a means to evaluate
the maturity of
methods and tools”,
but do not further
discuss tools.

[Vale et al.
2014]

2014 SLR Bad smells 2007–2013 —

SLR = Systematic Literature Review, Map = Mapping Study, Ex = Experiment, ES = Expert Survey.

models seems to be relevant [Kolovos et al. 2013]. Also, platforms and frameworks that
were originally intended for handling large data sets might be interesting.

For the second group, cognitive challenges, work on interactive tools and usability
is relevant. As reported earlier, multiple studies mention visualization and graphical
overload and usability as challenges. Here, abstraction is an important means to an end,
i.e., the focusing on the information that is relevant for a given purpose or stakeholder
concern (and intentionally abstracting away other details). This can be supported by
user interfaces and visual representations that are task-adequate. We can address
this challenge in multiple ways, for instance by gaining a better understanding of
the required SPL tasks in order to build interfaces that are “optimized” for these
tasks. Another way is by providing flexible user interfaces, which the users can adapt
according to their preferences and tasks. These may even be interfaces that “learn”
what is preferred for a particular task.

8.2.2. Consistency Checking and Model Correctness. Another set of challenges where fur-
ther research is needed is consistency checking and model correctness. Here, work from
software architecture and consistency between an expected architecture and the struc-
ture of the actual implementation seems relevant [Murphy et al. 2001]. Further work in

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:40 R. Bashroush et al.

the context of product lines and variability realization is required. In addition, many
of the existing variability management approaches are based on rather simple, i.e.,
Boolean semantics. When more complex aspects are addressed by the SPL approach,
e.g., non-Boolean product properties, ensuring consistency and correctness becomes
more challenging and more powerful reasoning approaches need to be applied.

8.2.3. Traceability from Problem to Solution Space. Another group of challenges arise from
the need to establish a mapping between problem and solution spaces. This is related
to the general problem of finding source code that is relevant for a particular concept
(e.g., when fixing a particular bug) and techniques for feature location [Dit et al. 2013].
Such techniques are of particular relevance when reverse engineering product lines
and establishing a variability representation in the first place (e.g., a feature model
and its mapping into implementation artifacts), based on existing products that were
not originally implemented using an SPL approach (also see challenges on integrating
variability management and legacy software).

8.2.4. Maintenance and Evolution. Multiple studies mention challenges around mainte-
nance and evolution. Examples are change impact analysis, handling of inconsistencies,
change propagation, project management and communication/organizational issues in
general within the maintenance team. Addressing such challenges in a product line
context is much more complex, e.g., due to more complex artifacts and a higher degree
of dependencies among artifacts [Botterweck and Pleuss 2014].

8.2. CONCLUSIONS

Future research directions were based on reported challenges within the various stud-
ies analyzed. Thus, some of these challenges could be influenced by the background of
the authors. For example, authors with consistency checking background would tend
to argue that consistency between product line artifacts is an open challenge. What is,
hence, required are more studies that provide empirical evidence on industrial prac-
tice in variability management [Berger et al. 2013] and end-user challenges. Here, an
industrial context could open up various new commercial perspectives, such as the
pressure to get the next product to the market; problems to find the right expert in
a large organization; and the challenge of communicating and collaborating within
multidisciplinary teams [Rubin and Rinard 2016].

On a “meta” level, when considering the research approaches adopted in the surveyed
studies, we observed a wide variation in quality, for example, in terms of: having an
explicit research methodology; having clear research questions and evaluation criteria;
supporting the replicability of the work; providing a comparison against existing work;
and discussing limitations and threats to validity. It is thus recommended that future
research pays closer attention to relevant structured research methods, such as the
guidelines for conducting and reporting on case studies [Runeson and Höst 2009] and
the guidelines for conducting and reporting on experiments [Jedlitschka and Pfahl
2005; Wohlin et al. 2012].

REFERENCES

M. Acher, P. Collet, P. Lahire, and R. B. France. 2011. Managing feature models with FAMILIAR: A demon-
stration of the language and its tool support. In Proceedings of the 5th International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS’11). ACM, 91–96.

M. Acher, M. Alférez, J. A. Galindo, P. Romenteau, and B. Baudry. 2014. ViViD: A variability-based tool for
synthesizing video sequences. In Proceedings of the 18th International Software Product Line Conference:
Companion Volume for Workshops, Demonstrations and Tools. ACM, 143–147.

V. Alves, N. Niu, C. F. Alves, and G. Valença. 2010. Requirements for engineering for software product lines:
A systematic literature review. Inf. Softw. Technol. 52, 8 (2010). 806–820.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:41

M. Antkiewicz and K. Czarnecki. 2004. FeaturePlugin: Feature modeling plug-in for eclipse. In Proceedings
of the OOPSLA Workshop on Eclipse Technology eXchange (ETX’04). ACM, 67–72.

S. Arion and J.-P. Tolvanen. 2004. MetaEdit+: Domain-specific modeling and code generation environment.
In Proceedings of the Workshop on Software Variability Management for Product Derivation - Towards
Tool Support. Springer, Berlin, 1–3.

N. H. Bakar, Z. M. Kasirun, and N. Salleh. 2015. Feature extraction approaches from natural language
requirements for reuse in software product lines: A systematic literature review. J. Syst. Software 106
(2015), 132–149.

R. Bashroush. 2010. A NUI based multiple perspective variability modeling CASE Tool. In Proceedings of
the 4th European Conference on Software Architecture (ECSA’10). Springer, Berlin, 523–526.

D. Batory, J. N. Sarvela, and A. Rauschmayer. 2004. Scaling step-wise refinement. IEEE Trans. Software
Eng. 30 (2004), 355–371.

G. Bécan, S. B. Nasr, M. Acher, and B. Baudry. 2014. WebFML: synthesizing feature models everywhere.
In Proceedings of the 18th International Software Product Line Conference: Companion Volume for
Workshops, Demonstrations and Tools. ACM. 112–116.

M. H. ter Beek, F. Mazzanti, and A. Sulova. 2012. VMC: A tool for product variability analysis. In Proceedings
of the International Symposium on Formal Methods (FM’12). Springer, Berlin, 450–454.

T. Berger, S. She, R. Lotufo, A. Wąsowski, and K. Czarnecki. 2010. Variability modeling in the real: a
perspective from the operating systems domain. In Proceedings of the 25th IEEE/ACM International
Conference on Automated Software Engineering. ACM, 73–82.

T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and A. Wąsowski. 2013. A survey
of variability modeling in industrial practice. In Proceedings of the 7th International Workshop on
Variability Modelling for Software-Intensive Systems (VaMoS’13). ACM, New York, 7–14.

G. Botterweck and A. Pleuss. 2014. Evolution of software product lines. In Evolving Software Systems, T.
Mens, A. Serebrenik, and A. Cleve, (Eds.). Springer, Berlin, 265–295.

R. M. M. Braga, C. M. L. Werner, and M. Mattoso. 1999. Odyssey: a reuse environment based on domain mod-
els. In Proceedings of the IEEE Symposium on Application-Specific Systems and Software Engineering
and Technology (ASSET’99). IEEE. 50–57.

P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil. 2007. Lessons from applying the
systematic literature review process within the software engineering domain. J. Syst. Softw. 80, 4
(2007), 571–583.

D. Beuche. 2016. Using pure: variants across the product line lifecycle. In Proceedings of the 20th Interna-
tional Systems and Software Product Line Conference (SPLC’16). ACM. 333–336.

BigLever. 2016. Gears. Retrieved from http://www.biglever.com/solution/product.html.
G. Campbell. MTP TOOL- The metaprogramming text processor. Retrieved from http://www.domain-

specific.com/index.html.
R. Capilla, A. Sánchez, and J. C. Dueñas. 2012. An analysis of variability modeling and management tools

for product line development. In Proceedings of the Software and Services Variability Management
Workshop Concepts, Model and Tools. 32–47.

D. Castelluccia and N. Boffoli. 2014. Service-oriented product lines: a systematic mapping study. ACM
SIGSOFT Software Eng. Notes 39, 2 (2014), 1–6.

V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger. 2004. XML-Based Feature Modelling. In Proceed-
ings of the International Conference on Software Reuse (ICSR’04). Springer, Berlin. 101–114.

L. Chen and M. A. Babar. 2011. A systematic review of evaluation of variability management approaches in
software product lines. Inf. Softw. Technol. 53, 4 (2011), 344–362.

P. Clements and L. Northrop. 2007. Software Product Lines: Practices and Patterns (6th. ed.). Addison-Wesley
Longman, Boston, MA.

K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wąsowski. 2012. Cool features and tough
decisions: A comparison of variability modeling approaches. In Proceedings of the 6th International
Workshop on Variability Modeling of Software-Intensive Systems (VaMoS’12). ACM, New York, 173–182.

D. Dhungana, P. Grünbacher, and R. Rabiser. 2011. The DOPLER meta-tool for decision-oriented variability
modeling: a multiple case study. Autom. Software Eng. 18, 1 (2011). 77–114.

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. 2013. Feature location in source code: a taxonomy and
survey. J. Software Evolutio. Process 25, 1 (2013). 53–95.

O. Djebbi, C. Salinesi, and G. Fanmuy. 2007. Industry survey of product lines management tools: Require-
ments, qualities and open issues. In Proceedings of the 15th IEEE International Requirements Engineer-
ing Conference. IEEE. 301–306.

DOORS-TREK. 2013. Retrieved from http://www-01.ibm.com/support/docview.wss?uid=swg24032035.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:42 R. Bashroush et al.

Eclipse. 2016. Graphical Modeling Framework (GMF, Eclipse Modeling subproject). Retrieved from
https://www.eclipse.org/modeling/gmp/.

H. Eichelberger, S. El-Sharkawy, C. Kröher, and K. Schmid. 2014. EASy-producer: product line development
for variant-rich ecosystems. In Proceedings of the 18th International Software Product Line Conference:
Companion Volume for Workshops, Demonstrations and Tools. ACM. 133–137.

E. Engström and P. Runeson. 2011. Software product line testing - A systematic mapping study. Inf. Softw.
Technol. 53, 1 (2011), 2–13.

M. Eysholdt and H. Behrens. 2010. Xtext: implement your language faster than the quick and dirty way. In
Proceedings of the ACM International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion (OOPSLA’10). ACM. 307–309.

A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. 2001. Intelligent support for interactive configuration
of mass-customized products. In Proceedings of the 14th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE’01). Springer, Berlin.
746–756.

R. Fernández, M. A. Laguna, J. Requejo, and N. Serrano. 2009. Development of a feature modeling tool using
microsoft DSL tools. Technical Report. University of Valladolid. GIRO Technical Report 05/01/ 2009.

W. Frakes, R. Prieto-Diaz, and C. Fox. 1997. DARE-COTS: A domain analysis support tool. In Proceedings
of the 17th International Conference of the Chilean Computer Science Society (SCCC’97). IEEE. 73–77.

C. Gauthier, A. Classen, M.-A. Storey, and M. Mendonca. 2010. XToF: A tool for tag-based product line
implementation. In Proceedings of the 4th International Workshop on Variability Modeling of Software
Intensive Systems (VaMoS 2010), ICB-Research Report 37, Universität Duisburg-Essen. 163–166.

H. Gomaa and M. E. Shin. 2004. Tool support for software variability management and product derivation in
software product lines. In Proceedings of the Workshop on Software Variability Management for Product
Derivation—Towards Tool Support. Springer, Berlin. 331–331.

M. Gómez, I. Mansanet, J. Fons, and V. Pelechano. 2012. Moskitt4SPL: Tool support for developing self-
adaptive systems. In Proceedings of the 17th Conference on Software Engineering and Databases
(JISBD’12).

G. Guedes, C. Silva, M. Soares, and J. B. de Castro. 2015. Variability management in dynamic software
product lines: A systematic mapping. In Proceedings of the 2015 IX Brazilian Symposium on Components,
Architectures and Reuse Software (SBCARS’15). IEEE. 90–99.

J. van Gurp, J. Bosch, and M. Svahnberg. 2001. On the notion of variability in software product lines. In
Proceedings of the Working IEEE/IFIP Conference on Software Architecture (WICSA’01). IEEE Computer
Society, Washington, DC, 45–54.

J. Heer, S. K. Card, and J. A. Landay. 2005. Prefuse: A toolkit for interactive information visualization.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’05). ACM.
421–430.

F. Heidenreich. 2009. Towards systematic ensuring well-formedness of software product lines. In Proceedings
of the 1st International Workshop on Feature-Oriented Software Development (FOSD’09). ACM. 69–74.

F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende. 2009. Derivation and refinement of textual
syntax for models. In Proceedings of the European Conference on Model Driven Architecture - Foundations
and Applications (ECMDA-FA 2009). Springer, Berlin. 114–129.

A. Hervieu, B. Baudry, and A. Gotlieb. 2011. PACOGEN: Automatic generation of pairwise test configurations
from feature models. In Proceedings of the 22nd Annual International Symposium on Software Reliability
Engineering (ISSRE’11). IEEE. 120–129.

G. Holl, P. Grünbacher, and R. Rabiser. 2012. A systematic review and an expert survey on capabilities
supporting multi product lines. Inf. Softw. Technol. 54, 8 (2012), 828–852.

Hydra Feature Modeling. 2009. Retrieved from http://caosd.lcc.uma.es/spl/hydra/index.htm.
IBM Rational DOORS. Retrieved from www.ibm.com.
A. Jedlitschka and D. Pfahl. 2005. Reporting guidelines for controlled experiments in software engineering.

In Proceedings of the International Symposium on Empirical Software Engineering (ISESE’05). IEEE.
95–104.

M. F. Johansen, Ø. Haugen, and F. Fleurey. 2012. An algorithm for generating t-wise covering arrays
from large feature models. In Proceedings of the 16th International Software Product Line Conference
(SPLC’12). ACM. 46–55.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. 1990. Feature oriented domain analysis
(FODA) feasibility study. Technical Report. Software Engineering Institute, Carnegie Mellon University
CMU/SEI-90-TR-211990.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:43

M. Khurum and T. Gorschek. 2009. A systematic review of domain analysis solutions for product lines. J.
Syst. Software 82, 12 (2009), 1982–2003.

K. Kim, H. Kim, M. Ahn, M. Seo, Y. Chang, and K. C. Kang. 2006. ASADAL: A tool system for co-development
of software and test environment based on product line engineering. In Proceedings of the 28th Interna-
tional Conference on Software Engineering (ICSE’06). ACM. 783–786.

B. Kitchenham, S. Charters, D. Budgen, P. Brereton, M. Turner, S. Linkman, M. Jorgensen, E. Mendes,
and G. Visaggio. 2007. Guidelines for performing systematic literature reviews in software engineering.
Technical Report. Keele University, UK EBSE-2007–12007.

B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman. 2009. Systematic literature
reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 51, 1 (2009), 7–15.

D. S. Kolovos, L. M. Rose, N. D. Matragkas, R. F. Paige, E. Guerra, J. u. Cuadrado, J. De Lara, I. Rath, D.
Varro, M. Tisi, and J. Cabot. 2013. A research roadmap towards achieving scalability in model driven
engineering. In Proceedings of the Workshop on Scalability in Model Driven Engineering. ACM. 2.

C. W. Krueger. 2007. The 3-tiered methodology: Pragmatic insights from new generation software product
lines. In Proceeding of the 11th International Software Product Line Conference (SPLC’07). IEEE. 97–
106.

C. Krueger and P. Clements. 2014. Systems and software product line engineering with gears from BigLever
software. In Proceedings of the 18th International Software Product Line Conference: Companion Volume
for Workshops, Demonstrations and Tools. ACM. 121–125.

M. A. Laguna and Y. Crespo. 2013. A systematic mapping study on software product line evolution: From
legacy system reengineering to product line refactoring. Sci. Comput. Program. 78, 8 (2013), 1010–1034.

D. Lettner, M. Petruzelka, R. Rabiser, F. Angerer, H. Prähofer, and P. Grünbacher. 2013. Custom-developed vs.
model-based configuration tools: Experiences from an industrial automation ecosystem. In Proceedings of
MAPLE/SCALE 2013, Workshop at the 17th International Software Product Line Conference (SPLC’13).
ACM. 52–58.

L. B. Lisboa, V. C. Garcia, D. Lucrédio, E. S. de Almeida, S. R. de Lemos Meira, and R. P. de Mattos Fortes.
2010. A systematic review of domain analysis tools. Inf. Softw. Technol. 52, 1 (2010), 1–13.

L. B. Lisboa, V. C. Garcia, E. S. de Almeida, and S. R. de Lemos Meira. 2011. ToolDAy: a tool for domain
analysis. Int. J. Software Tools Technol. Transfer 13, 4 (2011), 337–353.

R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and A. Egyed. 2015a. A first systematic mapping study on
combinatorial interaction testing for software product lines. In Proceedings of the 8th IEEE International
Conference on Software Testing, Verification and Validation (ICST’15) Workshops. IEEE. 1–10.

R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed. 2015b. A systematic mapping study of search-based
software engineering for software product lines. Inf. Softw. Technol. 61 (2015), 33–51.

P. Y. Martin and B. A. Turner. 1986. Grounded theory and organizational research. J. Appl. Behav. Sci. 22,
2 (1986), 141–157.

I. do Carmo Machado, J. D. McGregor, Y. C. Cavalcanti, and E. S. de Almeida. 2014. On strategies for testing
software product lines: A systematic literature review. Inf. Softw. Technol. 56, 10 (2014), 1183–1199.

J. Martinez, C. Lopez, E. Ulacia, and M. del Hierro. 2009. Towards a model-driven product line for web
systems. In Proceedings of the 5th Model-Driven Web Engineering Workshop (MDWE’09).

T. von der Maßen and H. Lichter. 2004. RequiLine: A requirements engineering tool for software product lines.
In Proceedings of the 5th International Workshop on Product Family Engineering (PFE’04). Springer,
Berlin. 168–180.

G. E. Matt and T. D. Cook. 1994. Threats to the validity of research syntheses. In Handbook of Research
Synthesis. H. Cooper, & L. V. Hedges (Eds.), Russell Sage Foundation, New York.

M. Mendonca, M. Branco, and D. Cowan. 2009. S.P.L.O.T.: Software Product Lines Online Tools. In Pro-
ceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems
Languages and Applications (OOPSLA’09). ACM. 761–762.

B. Mohabbati, M. Asadi, D. Gasevic, M. Hatala, and H. A. Müller. 2013. Combining service-orientation
and software product line engineering: A systematic mapping study. Inf. Softw. Technol. 55, 11 (2013),
1845–1859.

S. Montagud, S. Abrahão, and E. Insfran. 2012. A systematic review of quality attributes and measures for
software product lines. Software Qual. J. 20, 3 (2012). 425–486.

G. C. Murphy, D. Notkin, and K. J. Sullivan. 2001. Software reflexion models: Bridging the gap between
design and implementation. IEEE Trans. Software Eng. 27, 4 (2001). 364–380.

V. Myllärniemi, T. Asikainen, T. Männistö, and T. Soininen. 2005. Kumbang configurator—A configuration
tool for software product families. In Proceedings of the IJCAI-05 Workshop on Configuration.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

14:44 R. Bashroush et al.

V. Myllärniemi, M. Raatikainen, and T. Männistö. 2012. A systematically conducted literature review: Qual-
ity attribute variability in software product lines. In Proceedings of the 16th International Software
Product Line Conference (SPLC’12). ACM. 41–45.

P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor, E. S. de Almeida, and S. R. de Lemos
Meira. 2011. A systematic mapping study of software product lines testing. Inf. Softw. Technol. 53, 5
(2011). 407–423

R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. 2000. The Koala component model for
consumer electronics software. IEEE Comput. 33, 3 (2000), 78–85.

K. Park, D. Ryu, and J. Baik. 2012. An integrated software management tool for adopting software product
lines. In Proceedings of the 11th IEEE/ACIS International Conference on Computer and Information
Science (ICIS’12). IEEE. 553–558.

A. Pleuss and G. Botterweck. 2012. Visualization of variability and configuration options. Int. J. Software
Tools Technol. Transfer 14, 5 (2012), 497–510.

K. Pohl, G. Böckle, and F. v. d. Linden. 2005a. Software Product Line Engineering: Foundations, Principles
and Techniques. Springer-Verlag, Berlin.

K. Pohl, G. Böckle, and F. van der Linden. 2005b. VARMOD Tool. Retrieved from http://www.sse.uni-essen.
de/swpl/SEGOS-VM-Tool/index.html.

Pure-Systems. 2016. pure::variants variant management tool. Retrieved from http://www.pure-systems.com/
pure_variants.49.0.html.

T. Quatrani. 2002. Visual Modeling with Rational Rose 2002 and UML. Addison-Wesley Longman, Boston,
MA.

R. dos Santos Rocha and M. Fantinato. 2013. The use of software product lines for business process manage-
ment: A systematic literature review. Inf. Softw. Technol. 55, 8, 2013. 1355–1373.

J. Rubin and M. Rinard. 2016. The challenges of staying together while moving fast: an exploratory study.
In Proceedings of the 38th International Conference on Software Engineering (ICSE’16). ACM. 982–993.

P. Runeson and M. Höst. 2009. Guidelines for conducting and reporting case study research in software
engineering. Empirical Software Eng. 14 (2009), 131–164.

G. Russell, F. Burns, and A. Yakovlev. 2012. VARMA—VARiability modelling and analysis tool. In Proceedings
of the IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS’12). IEEE. 378–383.

H. Samih and R. Bogusch. 2014. MPLM - MaTeLo product line manager: [relating variability modelling
and model-based testing]. In Proceedings of the 18th International Software Product Line Conference:
Companion Volume for Workshops, Demonstrations and Tools. ACM 127–142.

I. de Sousa Santos, R. M. C. Andrade, and P. de Alcântara dos Santos Neto. 2015. Templates for textual use
cases of software product lines: results from a systematic mapping study and a controlled experiment.
J. Software Eng. R&D 3 (2015), 5.

SAP Configurator. 2016. Retrieved from www.sap.com.
K. Schmid and M. Schank. 2000. PuLSE-BEAT — A decision support tool for scoping product Lines. In

Proceedings of the International Workshop Software Architectures for Product Families (IW-SAPF-3).
Springer, Berlin, 65–75.

C. B. Seaman. 1999. Qualitative methods in empirical studies of software engineering. IEEE Trans. Software
Eng. 25, 4 (1999). 557–572.

S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-Cortés. 2012. BeTTy: Benchmarking and
Testing on the Automated Analysis of Feature Models. In Proceedings of the 6th International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS’12). ACM. 63–71.

D. Sellier, M. Mannion, and J. X. Mansell. 2008. Managing requirements inter-dependency for software
product line derivation. Requirements Engineering 13, 4 (2008), 299–313.

P. Shakari and B. Møller-Pedersen. 2006. On the implementation of a tool for feature modeling with a base
model twist. In Proceedings of the Norwegian Informatics Conference (NIK’06). 81–93.

S. Sepúlveda, A. Cravero, and C. Cachero. 2016. Requirements modeling languages for software product
lines: A systematic literature review. Inf. Softw. Technol. 69 (2016), 16–36.

S. She. 2016. Linux Variability Analysis Tools (LVAT). Retrieved from https://code.google.com/archive/
p/linux-variability-analysis-tools/.

I. F. da Silva, P. A. da Mota Silveira Neto, P. O’Leary, E. S. de Almeida, and S. R. de Lemos Meira. 2011.
Agile software product lines: A systematic mapping study. Softw. Pract. Exper. 41, 8 (2011), 899–920.

J. Sincero and W. Schröder-Preikschat. 2008. The Linux kernel configurator as a feature modeling tool. In
Proceedings of the 12th International Conference on Software Product Lines (SPLC’08). IEEE. 257–260.

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

CASE Tool Support for Variability Management in Software Product Lines 14:45

M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. 2004. COVAMOF: A framework for modeling variability in
software product families. In Proceedings of the 3rd International Conference on Software Product Lines
(SPLC’04). Springer, Berlin. 197–213.

M. Sinnema and S. Deelstra. 2007. Classifying variability modeling techniques. Inf. Softw. Technol. 49, 7
(2007), 717–739.

L. R. Soares, P. Potena, I. do Carmo Machado, I. Crnkovic, and E. S. de Almeida. 2014. Analysis of non-
functional properties in software product lines: A systematic review. In Proceedings of the 40th EU-
ROMICRO Conference on Software Engineering and Advanced Applications. IEEE. 328–335.

SparxSystems Enterprise Architect. 2016. Retrieved from www.sparxsystems.com.
M. Stengel, M. Frisch, S. Apel, J. Feigenspan, C. Kästner, and R. Dachselt. 2011. View infinity: a zoomable

interface for feature-oriented software development. In Proceedings of the 33rd International Conference
on Software Engineering (ICSE’11). IEEE. 1031–1033.

G. Succi, W. Pedrycz, J. Yip, and I. Kaytazov. 2001. Intelligent design of product lines in Holmes. In Proceed-
ings of the Canadian Conference on Electrical and Computer Engineering. IEEE. 75–80.

T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich. 2012. FeatureIDE: An extensible
framework for feature-oriented software development. Sci. Comput. Program. 79(2014), 70–85.

P. Trinidad, D. Benavides, A. Ruiz-Cortes, and S. Segura. 2008. FAMA Framework. In Proceedings of the
12th International Software Product Line Conference (SPLC’08). IEEE. 359–359.

G. Vale, E. Figueiredo, R. Abı́lio, and H. A. X. Costa. 2014. Bad smells in software product lines: A systematic
review. In Proceedings of the 8th Brazilian Symposium on Software Components, Architectures and Reuse
(SBCARS’14). IEEE. 84–94.

J. White, D. C. Schmidt, E. Wuchner, and A. Nechypurenko. 2007. Automating product-line variant selection
for mobile devices. In Proceedings of the 11th International Software Product Line Conference (SPLC’07).
IEEE. 129–140.

C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell. 2012. Experimentation in Software Engi-
neering. Springer, Berlin.

A. E. E. Yamany, M. Shaheen, and A. S. Sayyad. 2014. OPTI-SELECT: An interactive tool for user-in-the-loop
feature selection in software product lines. In Proceedings of the 18th International Software Product
Line Conference: Companion Volume for Workshops, Demonstrations and Tools. ACM. 126–129.

H. Zhang and S. Jarzabek. 2004. XVCL: a mechanism for handling variants in software product lines. Science
of Computer Programming 53, 3 (2004), 381–407.

B. Zhang and M. Becker. 2014. Variability code analysis using the VITAL tool. In Proceedings of the 6th
International Workshop on Feature-Oriented Software Development (FOSD’14). ACM. 17–22.

ZIPC Feature. 2009. Retrieved from http://www.zipc.com/english/product/xmodelink/.

Received March 2014; revised November 2016; accepted January 2017

ACM Computing Surveys, Vol. 50, No. 1, Article 14, Publication date: March 2017.

www.manaraa.com

Copyright of ACM Computing Surveys is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

